DEEPLY PENETRATING TRANSVERSE WAVES
IN A ROTATING VISCOUS FLUID

( GLUBOXOPRONIKAIUSHCHIE POPERECHNYE VOLNY
VO VRASHCHAIUSHCHEISIA VIAZKOI ZHIDKOSTI)

PMM Vcl.28, N 5, 1964, pp.952-955

Iu.G. MAMALADZE
(Tbilisi)

(Received November 22, 1963)

It is shown that as the frequency of rotation of a fluid approaches the half
frequency of the axlal oscillation of a disk immersed in it there 1is an
abrupt lncrease in the depth of penetration of viscous waves which are excl-
ted by the oscillations of the disk.

1, Pormulation of the problem, In the paper [1] the axial oscillations
of a disk in a rotating viscous 1ncompressible fluid have been investigated.
The case in which the angular veloclty of rotation 4, approaches half of the
frequency of osclllation 1 was excluded from consideration here, since cer-
tain conditlons necessary in the derivatlon of the boundary correction for-
mulas carried out in [1] would be violated.

It 1s exactly this case 2w, ® 01 that 1s the subject of the present paper;
however, the question of the boundary corrections 1s avoided.

Let a viscous incompressible fluild infinite 1n the radlal direction rotate
about the 0z axis with a constant angular velocity w,, and let a disk of
infinite radius immersed in 1t rotate 1n the fluid while simultaneously per-
forming small axial osclllations about the axis of rotation with amplitude
@, << 1, frequency (0 and damping coefficient vy . The fluld above and below
1s assumed to be unbounded or bounded by plane surfaces parallel to the sur-
face of the disk.

The angular velocity o° of the disk depends on the time ¢ 1in the fol-
lowing way: at
¢ = 0g + iapge” (@=Q+ iy (1.1)
Here is the complex oscillation frequency which is assumed to be quasi-
harmonic {y < @).

Taking the axial symmetry of the problem into conslderation, we shall
represent the veloclty and pressure distributions in the fluid 1n cylindrical
coordinates r, o, 2z 1n the form of a sum of the "rotary” and oscillatory
terms [1] iat iat

v, = rw, (z) ', U, = ©gr + rw, (z) ', v, = w, (3) P (1.2)

P = po + Yaport + py (r, 2) € (po == const) (1.3)
p 1= the density of the fluid.

Assuming the amplitude of the osclllations to be s0 small that Qg€ wq,
the Navier-Stokes equations can be linearized with respect to the quantities
Wrs Wgs W and, supplementing it wilth the continuity equation, the followlng
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system of linearized equations can be obtained for the four unknown functions
Wrs Wy w, and p,:

X 1 1dp dw, dw,
— 2 = —l =
iaw, RN ST @ + v T 2w, 4 — 0 (1.4}
d*w 1d dw
. — ® : — 14 z
iaw, + 2w, =V g iaw, = —?d_zl—{wv - (1.5)

Here v = n/p 1s the kinetic viscosity of the fluid and n 1s the dyna-
mic viscosity.

2 lution of the system, The solution of the system of equations (1.4)
and (1.5 has the form

2w, (2) = B exp (ik™) 2) + € exp (— ™ 2) + B exp (i) 2) +
2ind

+ € exp (— ik 2) — 570 @
2iw, (2) = B exp (k™ 2) + € exp (— ik™ 2) — B exp (iK) 2) —
R - 4ioed
—C exp (— i 5 + P 2.2)
w, (2) = (BM exp (k) 2) — CH exp (— ik™® 2)) + LGS exp (it z) —
i+ £
— P exp (— g 420, 4 p 2.3)
a? — 4we?
1 = _i..A 2 dw, (2) . 0
_.ppl(r,z)~—2 r—v—JE——!-zaSwz(u)du (2.4)

a

The solution contains seven coefficlients: 4, 5%, 5, O, ¢ and D and
the constant of integration in (2.4).

3. Boundary oconditions, In view of the lack of direct communication
between the fluid located above the disk and the fluld below 1t, they can be
considered separately. Then, to determine the coefficients of the solution
52.1) to (2.4) we have three boundary conditions of the surface of the disk
g = 0) associated with the law of its motion (1.1) and with Formulas (1.2)

wp(0)=0, w (0)=iago, w,(0)=0 (3.1)

Three more boundary conditions are given on the sutface which bounds the
fluid atbove or belour%'we shall designate i1t as z = g). If this surface is
rigid and moves Just like the baslic disk, the conditions for » = § then
coincide with (3.1), If it is a rigid and nonoscillating plane, then

wl(H) =0, w (H)=0, w,H)=20 (3.2)

In the cases (3.1) and (3.2) the boundary conditions do not affect the
function pP,, and therefore the constant of integration in {2.4) is not
determined it:;ar them.

But if the upper boundary of the fluid 1s a free surface, the boundary
conditions on it are then determined in the usual way (cf. £ 2] page 69) with
the help of the momentum flux tensor. It 1s easy to be convinced that they
reduce to the identities

w,’ (H) = 0, w, (H) =0, pirn#)=20 {3.3)
Although there are three equalities here, as in the case of (3.1) and

(3.2) also, one of them breaks up into two, as will be shown in Section 5.
Thus, the conditions (3.1) and (3.3) together determine all seven coeffici-
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ents of the solution (2.1) to (2.%).

4, Wave number analysis., Pormulas (2.1) and (2.2) show that oscillations
of a disk in a viscous fluid generate two waves with mutually opposed circu-~
lar polarizations apd with wave numbers k{*) (plus-wave) and i~ (minus-wave).
The wave numbers ,(+) are defined by Formula

MBI — i‘#“l’; (4.1)-
In the following we shall for definiteness consider that
Im %) >0 (4.2)

Formula (4.1) differes from the corresponding Formula (2.1) of [1) only
in that in the latter the frequency Q appears in place of g =0 + {y .
In view of the condition y « Q0 such an inaccuracy (deliberately assumed in
[1]) does not influence the validity of the results, since the case 2w, = Q
is excluded from consideration. However, if 2w, = Q1 , the case

|2 — 20| <L 7 (4.3)

for which the difference between Formula (4.1) and Formula (2.1) of [1)
becomes very important, is possible.

We shall introduce the notation
K2 = o®) 4 ) (4.4)
and with the help of Formula (4.1) determine the real and imaginary parts of
the wave numbers k{1);
) = (V@ T — W @)
olt) 1 Q 4 20,

T TV (VP (@t — "

In view of the condition yi L we always have ( + 2u,> y . Therefore
Formulas

(4.6)

™= _ g = (w)'/' (for Q + 2wo>> v) 4.7)

are applicable for t{*) and g(*) with a high degree of accuracy.

Hence it follows that the plus-wave penetration depth At and its length
are related by
! 1 2n

) — oea ) — o f— Y\ (A‘*’=—L‘*’=—— 48

L 2nA 2n ( Q 2(1)0 ) \ T(+) |3(,,)| ( )

Under such conditions there 1is realized in practice not a wave but an,
osclllation of a layer adjacent to the disk wilth thickness of order 1/ At
([2), page 112). Moreover, if it is taken into consideration that the quan-
tity A(H) 18 very small for a fluid with a not very high viscosity and for
frequencies (1 convenient for carrying out measurements, then observation
of the results of reaching by this wave a surface at a distance g from the
disk and being reflected from this surface is unrealizable.

The minus-wave has the same character as long as In - ay,|> vy . Then
- — b4 s
LY =270 = 2:;(———, T — oy ) (for | Q — 20> ) 4.9)

However, when 2y,~0Q , it follows from Formulas (4.5) and (4.6) that
“lim ) = 0, lim o) =4 (l)"’ (4.10)
20,8 2w 10 v

Hence
lim A0 = oo, lim L) = 2:;(1)"' (4.11)
20,~+0 20y 0 ¥
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Consequently, provided that vy # O , the depth of penetration of a minus-
wave in the region of frequencies of rotation close to half of the frequency
of the oscillations can be comparable to its length and can even considerably
exceed it. In the presence of such deeply penetrating waves resonance pheno-
mena assoclated with the formation of a standing minus-wave in the space
between the disk (the wave generator) and the reflecting surface should be
easlly observed. These effects should be observed as long as the distance

7 does not exceed the depth of penetration JAl-) defined in accordance with
4.5) by Formula
2.6 V2

T (Y (@ — 20 — )

The distance He at which the resonance effects damp out can serve as an
experimental estimate of the quantity A{),

Standing waves are generated between the oscillating surfaces for
H = ¥nL'>, between the disk and the nonoscillating surface for g = 3(2n—1)7
and between the disk and the free surface for = 1,7¢), where 5 =1,2,...
and [™1is determined with the help of Formula 74.6’

(4.12)

16— 22V 2V (VY (R £ 20, — y)”
| @ — 20|

(4.13)

Therefore, the phenomena dependent on the propagation conditions of the
minus-wave must show a periodic dependence on ¥ , whose study allows the
quantity 1{? to be measured.

5. Osolllations of a disk under a free surface, A freely suspended and
oscillating disk not only generates oscillations in a viscous fluid but also
itself feels thelr effect. Therefore, 1t 1tself can serve as an indicator
of the resonance effects predicted in the previous Section. These effects

are reflected in the perlodical dependency of the osclllation character of
the disk on the distance g

The frequency and damping of the osclllations of the disk can be found by
the method described in [1], knowing the solution of the system (1.%) and
(1.5). We shall investigate the dependerice on g of only the second of
these quantities. For this we shall write down the moment of force N
acting on the surface of the disk (cf. (3.1) in [1]) and the contributilon of
thii moment to the damping Ay (the quantlity vy 1s additive) (ef. (3.6) in
[11):

. —iaf
M=1, R4’ (0) &', Ay = _ Im (Me™) 5.1
o mnR4w, (0) e Y 21090 (5.1)

Here % and I are respectively the radius of the disk and the moment
of inertia of the oscillating system, Up to this point the question has
concerned osclllations of a disk of Infinlte radius, therefore the use of
Formulas (5.1) is assoclated with the neglect of boundary effects.

Only the case of the free surface for which the expression for § turns
out to be comparatively simple is consldered here (the free surface can be
regarded as a plane if the condition for smallness of the curvature of the
meniscous of the rotating fluld wczﬁ/b <« 1 1s observed, where ¢ 1s the
acceleration of free fall)., Moreover, the interaction of the upper surface
of the disk only with the free surface is investigated, it 1s assumed that
the distance between the disk and the bottom of the contalner does not vary,
and the contribution to the damping of the osclllation does not depend on §.
According to (2.4), we have the last of the conditions (3.3) in the form

H
2 Art — o, (H) + iug w, () dz = 0 (5.2)
a

In view of the independence of w, from »r there 1s obtained 4 = 0O .
Then the boundary conditions (3.1) and (3.3) turn out to be sufficient to
determine the other six coefficients of the solution (2.1) to (2.4), of which
we shall write down only B(%) and ClI);
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e—ik(E)H eik(i)H

, C*) = TFag - (5.3)

B(%) = a
F % eik<r)u+e-ik(t)ﬂ

e{k(:t)H + e'“‘(i)H

since the other coefficlents are not necessary to calculate the quantity ¥
which, according to (5.1), (2.2) and (5.3) is

M = Y aRWia (k) wa k) H + ) wo i) H) (5.4)

Substituting (5.4) into (5.2) and taking into account the inequality
vy 0 glves

5.5)
Av— aRin ( ™ sian 2t H — o) sin 26 H vsinh 200 F — 6 sin 200 11 \]
¥ 8/ cos 201} i Lcosh2t*) Jf cos 2007) H +-cosh21%) | J

Numerical calculations with this formula indicate that for increasing but
st111 sufficiently small H (H S>> A)) the first term in parentheses ceases
to depend on it, If 2w, = D , then the second term depends pericdically on
¥ (the longer the closer Wy t? 0/2) and this dependency gradually dies out,
coming to naught for H>>}.,(" ; for such values of ¥ the damping of the
oscillation has the value computed in [1] and is typical for osc-llations of
a disk in an unbounded fluid.

The author is grateful to E.L. Andronikashvili, S.G. Matinian and Dzh.S.
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