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It is shown that as the frequency of rotation of a fluid approaches the half 
frequency of the axial oscillation of a disk immersed In it there Is an 
abrupt increase in the depth of penetration of viscous waves which are exci- 
ted by the oscillations of the disk. 

1. bormulrtlon of the problem. In the paper [l] the axiai oscillations 
of a disk in a rotating viscous Incompressible fluid have been Investigated. 
The case in which the angular velocity of rotation do approaches half of the 
frequency of oscillation Cl was excluded from consideration here, since cer- 
tain conditions necessary In the derivation of the boundary correction for- 
mulas carried out in [1] would be violated. 

It Is exactly this case 2~ z n that is the subject of the present paper; 
however, the question of the boundary corrections is avoided. 

Let a viscous incompressible fluid Infinite in the radial direction rotate 
about the 02 
Infinite radius 

axis with a constant angular velocity Q, and let a disk of 
Immersed In it rotate In the fluid while simultaneously per- 

formine small axial oscillations about the axis of rotation with amnlltude 
cp,<-l,-frequency Ci and damping coefficient y , The fluid above and below 
is assumed to be unbounded or bounded by plane surfaces parallel to the sur- 
face of the disk. 

The angular velocity cp' of the disk depends on the time t in the fol- 
lowing way: 

Is the complex oscillation frequency which is assumed to be quasi- 
har%zc ~V=X n). 

Taking the axial symmetry of the problem into consideration, we shall 
represent the velocity and pressure distributions In the fluid in cylindrical 
coordinates in the form of a sum of the 'rotaryn and "oscillatory" 
terms Cl] 

r, cpt 2 

vr = rwy (2) P, VV = o*r + rwp (z) P, v, = Wz (z) F (1.2) 

p = pe + 1/zpo02~2 + p1 (r, z) eiat (pe = const) (1.3) 

P la the density of the fluid. 

Assuming the amplitude of the oscillations to be so small that nmOa we, 
the Navier-Stokes equations can be linearized with respectto the quantltles 
wr, WQY WI and, supplementing it with the continuity equation, the following 
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sYetem,of linearized equations can be obtained for the four aon functions 

I& 3 Wpl trj, - p,. : 

iuw, - 2w,w, = ---- 1 1 Q1 + v ss , 
dw 

p r dr 
2wr+-+=o (1.4) 

CPW 1 dpl Swz iawV+2wo’V,=v&!, iaw,=-_-+vx 
P dz 

(1.5) 

He= v = dp is the kinetic viscosity of the fluid ~XXI q is the dma- 
mic viscosity. 

and’{1 .$%t;%$f$ r’rtaP* 
The solution of the system of equations (1.4) 

2w, (z) = B(+) exp (ik(+) 2) + C(+) exp (- GA+) 2) + Bf-) exp (i$-) e} + 

+ C(-) exp (- ik(-) 2) - 
2iaA 

aa - 400* (2.Q 

2:‘~~ (2) = IT(*) exp (ik(+) z) + Cc’) exp (- ik(+) z) - I?(-) exp (ik(-) z) - 

- C(-) exp (-- ik(-) z) f 
4 io& 

a2 - &era 
(2.2) 

uzz (~1 = &- (B(+) exp (ik(+) z) - C(+) exp (- ik(+) z)) + _&_ (B(-) exp (&I 1) _ 

- C(-) exp (- ifs(-) z) + 2id 
az - 46$ 

z+r) f2.3) 

1 
-pPl (TV 4 - 2 

dw (4 
-&&Lv+ (2.4) 

Q 

The solution contains Beven coefficients: A, B+, F, C+, IT and D and 
the constant of integration in (2.4). 

3. lbouam7 0oMlq1olW, In view of the lack of direct communication 
between the fluid located above the disk and the fluid below it, they can be 

Then, to determine the coefficients of the solution 
we have three boundary conditions of the surface of the disk 

the law of its motion (1.1) and with Formulas (1.2) 

q.(O)=O, zu,(O)=iacpo, w,(O)=0 (3.1) 

Three more bounda conditions are given on the sutface which bounda the 
fluid above or below Ts we shall designate It as * - 8). If this surface is 
rigid and moves just like the basic disk, then 
coincide with (3.1). 

the conditions for t - y 
If It la a rigid and nonosclllatlng plane, then 

w,(H) = 0, w,(H) =o, w,(H) = 0 (3.2) 

In the cases (3.1) and (3.2) the boundary conditions do not affect tha 
function P 
detemnined b; 

and therefore the constant of integration In (2.4) is not 
them. 

But if the upper boundary of the fluid Is a free surface the boundary 
conditions on It are then determined in the usual way (cf. /2j page 69) with 
the help of the momentum flux tensor. It ia’eaey to be convinced that they 
reduce to the identities 

w; (H) = 0, WPpl (H) = 0, Pa fr, m = 0 (3.3) 

Although there are three equalities here, as in the cane of (3.1) and 
(3.2) also, one of them breaks up into two, as will be ahown in Section 5. 
Thus, the conditiona (3.1) and (3.3) -together determlne all ueven coeffici- 
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ents of the solution (2.1) to (2.4). 

4. #r*aaImbesBMlyWir. Formulas (2.1) and (2.2) show that oeclllatlone 
of a disk in a vlecous fluid generate two wavea with mutually o 

(+I P 
posed clrcu- 

lar polarlaatloNt and with wave numbers k 
The wave numbera k(f) are defined by Formula 

(plus-wave) and k-1 (minus-wave). 

k(f) a = af2oo -_i- 
V 

(4.1). 

In the following we shall for definiteness consider that 

Im k(*) > 0 (4.2) 

Formula (4.1) dlfferea from the corresponding Formula (2.1) of Cl] only 
In that In the latter the frequency n appears In place of o = 0 + f.~ . 
In vle$ of the condition y an such an inaccuracy (deliberately assumed In 
[l] doea not Influence the validity of the results, since the case 2tu0 f n 
is excluded from consideration. However, If 23~~~ z CI , the case 

IQ-2%1<7 (4.3) 

for which the difference between Formula (4.1) and Formula (2.1) of Cl] 
becomes very Important, is possible. 

We &all Introduce the notation 

k(Y) = o(*) + iv(f) (4.4) 

and with the help of Formula (4.1) determine the real and imaginary parts of 
the wave numbers k(*): 

(4.5) 

(4.6) 

In view of the condition ~2 n we always have Q + C&c V y . Therefore 
Formulaa 

v(+) = _ o(t) = 52 + 20, ‘Is v (for Q + 20, > y) (4.7) 

are applicable for t(+) and o*) with a high degree of accuracy. 

Hence It follows that the plus-wave penetration depth h(+) and it8 length 
are related bv 

L(+) = &A(+) = 2n c 8 ;20, )” (A(+) = 5 L(+) = fi) (4.8) 

Under euch condition6 there ia realized In practice not a wave but an, 
oscillation of a layer adjacent to the dlek with thickness of order l/&(+) 
(C21, pye 112). Moreover, if it le taken Into consideration that the quan- 
tity kc+ ie. very emall for a fluid with a not very high vlscoslty and for 
frequenoles n convenient for carrying out measurements, then observatlon 
of the results of reaohw by thla wave a surface at a distance fl from the 
disk and being reflected from thla surface ie unrealizable. 

The minus-wave has the same character a8 long ai 1~3 - &,I 9 y . Then 

l9-J = 2d(-) = 2n , Q _“& , ( 1 % 
(for I Q --2~0,1~y) (4.9) 

However, when &I,,- n , it follows from Formulas (4.5) and (4.6) that 

'lim z(-) = 0, 
2uyd-i 

(4.10) 

Hence 

lim I.(-) = 00, ]im LC-1 = &g ' 
() 

" 
zy+n *+n r 

(4.11) 
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Consequently, provided that y # 0 , the depth of penetration of a minus- 
wave in the region of frequencies of rotation close to half of the frequency 
of the oscillations can be comparable to its length and can even considerably 
exceed it. In the presence of such deeply penetrating waves resonance pheno- 
mena associated with the formation of a standing minus-wave in the space 
between the disk (the wave generator) and the reflecting surface should be 
easily observed. These effects should be observed as long as the distance 

rJ+.5) by Formula 
does not exceed the depth of penetration A(-), defined in accordance with 

A(-) = l/z; 
(IL ys + ( D - 20,)s - y)I” 

(4.12) 

The distance H,, at which the resonance effects damp out can serve as an 
experimental estimate of the quantity j,,(-I. 

Standing waves are generated between the oscillating surfaces for 
H = +nL'-', 
and between 

between the disk and the nonoscillating surface for H = $(&-l)~(-) 
the disk and the free surface for 

and L"is determined with the help of Formula 
r4Y6p (-1, where n = 1,2,... 

Therefore, the phenomena dependent on the propagation conditions of the 
minus-wave must show a periodic dependence on ,y , whose study allows the 
quantity L'-) to be measured. 

5. 080ill~tlOnI! of I dirlc under r, f'rrr nurtror, A freely suspended and 
oscil lating disk not only generates oscillations In a viscous fluid but also 
itsel f feels their effect. Therefore, it itself can serve as an indicator 
of the resonance effects predicted in the previous Section. These effects 
are reflected in the periodical dependency of the oscillation character of 
the disk on the distance fl . 

The frequency and damping of the oscillations of the disk can be found by 
the method described in [1], knowing the solution of the system (1.4) and 

We shall investigate the dependence on fl of only the second of 
For this we shall write down the moment of force M 

acting on the surface of the disk (cf. (3.1) in Cl]) and the contribution of 
this moment to the damping my (the quantity y 
I-13): 

is additive) (cf. (3.6) in 

il4= ‘I2 nqR%n,’ (0) eia’, Ay = - Im (~94e+) 
21 SZCfJ, 

Here A and I are respectively the radius of the disk and the moment 
of inertia of the oscillating system. Up to this point the question has 
concerned oscillations of a disk of infinite radius, therefore the use of 
Formulas (5.1) is associated with the neglect of boundary effects. 

Oniy the case of the free surface for which the express'_on for M turns 
out to be comparatively simple Is considered here (the free surface can be 
regarded as a plane if the condition for smallness of the curvature of the 
meniscous of the rotating fluid u+,'R/Q 4 1 Is observed, where is the 
acceleration of free fall). Moreover, the interaction of the upped surface 
of the disk only with the free surface is investigated, it is assumed that 
the distance between the disk and Che bottom of the container does not vary, 
and the contribution to the damping of the oscillation does not depend on H. 
According to (2.4), we have the last of the conditions (3.3) in the form 

H 
1 * ._-,.2 _ vwl' (ii) + ia 

\ 
wz (2) dz = 0 

. 
I. 

(5.2) 

In view of the independence of wz from r there is obtained A = 0 . 
Then the boundary conditions (3.1) and (3.3) turn out to be Sufficient to 
determine the other six coefficients of the solution (2.1) to (2.4), of which 
we shall write down only I?(*) and Cc*): 
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B(‘) = T aqo 
e-ik( * ‘II 

Cc*) = 7 acp0 
,ik(*)H 

,{k(*)H + ,-ik(k)H ’ ,ik(k)H + e -ik(*)H 
- (5.3) 

since the other coefficients are not necessary to calculate the quantity '4 
which, according to (5.1), (2.2) and (5.3) Is 

AI = 1!,nR4qia (k(‘) tan kc+) H j- k(-) tan kc’-) H) (5.4) 

Substituting (5.4) into (5.2) and taking Into account the Inequality 
y-X G gives 

(5.5) 

r(+),ti2r(‘) H - u(‘) sin 2a(+) Ii + &)rinh 2%(-j II - u(-) sin 2~7~) II ’ 

cos 2d” ii +dC2t(” Ii 
----I 

cos 2u(-) If + cM?r(-) M i 

Numerical calculations with this formula Indicate that for lncreasln& but 
still sufficiently small H(H>h(+)) the first term In parentheses ceases 
to depend on It. If 2ur, zz D , then the second term depends periodically on 
,Y (the longer the closer G/2) and this dependency gradually dies out, 
coming to naught for H&'t-9. for such values of H the damping of the 
oscillation has the value cornpuked In [l] and Is typical for osclllatlons of 
a disk In an unbounded fluid. 

The author Is grateful to E.L. Andronlkashvlll, S.G. Matlnlan and Dzh.S. 
Tsakadze for their Interest in the work and for valuable discussions. 
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